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ABSTRACT   

Recently dense trajectories [1] have shown to be a successful video representation for action recognition, and have achieved 
state-of-the-art results on a variety of datasets. However, there are problems to recognize similar and fine-grained motion 
if we apply these trajectories to gesture recognition. In this paper, we propose new method in which dense trajectories are 
calculated in segmented regions around the detected human body parts. Spatial segmentation is achieved by body parts 
detection [2]. Temporal segmentation is done for every fixed number of video frames. The proposed method enables to 
remove background video noises. In addition, our method enables to recognize similar and fine-grained motion. Since only 
few video datasets are available for gesture classification, we also built new gesture dataset and evaluated our method with 
the dataset. Experimental results show that our method outperformed the original dense trajectories.  
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1. INTRODUCTION  
Recently, it is becoming popular providing information to each individual person in public space, such as stations and 
shopping malls. If the customers are in a group, it is preferable to optimize recommendations will be changed from the one 
for an individual person. However, a technology detecting group and estimating relationship have not been established yet. 
To estimate relationship, High-precision group detection is needed. Group detection has been studied by several 
researchers [3-7]. But, it is difficult to detect group only with features proposed by their method, such as the head pose and 
the distance between two pedestrians. If we can recognize human gesture, persons will be recognized accurately as a group. 
Therefore, action including interaction recognition, i.e. gesture recognition, is important to improve the precision of the 
group detection.  

Action recognition has been studied from various perspectives [8-13]. Specially, trajectories around humans convey critical 
long-period information on human behaviors. Therefore, trajectory-based action recognition has been extensively studied 
in the past few years [1, 13, 15, 17, 18]. Matikainen et al. [13] extracted trajectories by using a standard Kanade-Lucas-
Tomasi (KLT) tracker [14]. The trajectories were clustered. The elements of an affine transformation matrix which was 
computed for each cluster center were used to represent the trajectories. Sun et al. [15] extracted trajectories by matching 
SIFT descriptors [16] between two consecutive frames. To limit the effect of incorrect matches, they imposed a unique-
match constraint among the descriptors and discarded matches that are too far apart. Sun et al. [17] combined KLT with 
SIFT trajectories to extract long-duration trajectories and to increase the trajectories density. To assure a dense coverage 
with trajectories, random points are sampled for tracking within the region of existing trajectories. Takahashi et al. [18] 
extracted fixed-dimensional features from KLT trajectories and SURF features. The SURF features were extracted by 
calculating the SURF descriptors [19] at the end point of the tracking. Among these trajectories, dense trajectories which 
proposed by Wang et al. [1] have shown to be an efficient video representation for action recognition, and have achieved 
state-of-the-art results on a variety of datasets. They densely sampled key-points for each frame, and tracked key-points in 
the video based on optical flow to obtain trajectories. They computed multiple descriptors, i.e. trajectory, Histogram of 



 
 

 
 

 
 

Gradient (HOG) [20], Histogram of Optical Flow (HOF) [21] and Motion Boundary Histogram (MBH) [22] along the 
trajectories of key-points to capture shape, appearance and motion information. Figure 1 shows examples of dense 
trajectories. However, these trajectories are accumulated for whole image regions and times. Although it can classify major 
action recognition such as sitting and walking, it is not suitable for similar and fine-grained motion of human, such as 
pointing with hands, waving hands, and other gestures.  

 

 
 

Figure 1. Visualization of dense trajectories. The red dots indicate the point positions in the current frame. The green lines 
indicate dense trajectories. (a): Visualization of dense trajectories for “Pointing with hands”. (b) Visualization of dense 
trajectories for “Nodding”. (c): Visualization of dense trajectories for “Waving hands”. 

 

In this paper, we improve dense trajectories by extracting local features with spatio-temporal segmentation. To segment 
spaces, we utilize a body part detection [2] and improve region range of each body part for each video frame. To segment 
times, we divide video frames into fixed time durations. These segmentations enable to remove video noises. In addition, 
they enable to recognize similar and fine-grained motion. Since only few video datasets are available for gesture 
classification, we also built our own dataset. We compared our method with the original dense trajectories on this dataset. 
This result showed that our method is state of the art for gesture recognition. 

This paper is organized as follows. Section 2 presents our video representation with spatial and temporal dense trajectories. 
The experimental results are given in Section 3. Section 4 concludes the paper. 

 

2. SPATIAL AND TEMPORAL SEGMENTED DENSE TRAJECTORIES 
The proposed method has added two steps (Step 1 and 2) to the original dense trajectories which have three steps. Therefore, 
our gesture recognition method consists of five steps, which are shown in Figure 2. Step 1 is spatial segmentation. This 
step sets regions around the detected human body parts [2]. Step 2 is temporal segmentation. We divide video frames into 
fixed time durations. Step 3 is key-points detection and tracking. Step 4 is feature extraction. These Steps are based on the 
original dense trajectories [1]. Step 5 is classification. Bag-of-Features (BoF) approach [23] and Support Vector Machine 
(SVM) classifier [24] are used to recognize gesture. The following subsections explain each step.  

 

 
Figure 2. Process of human gesture recognition. The whole process is composed of five steps. Step 1 and 2 are the 
proposed steps. These steps make us extract local features. 

(a) (b) (c) 



 
 

 
 

 
 

2.1 Gesture dataset 

Among the datasets of videos released to date, only few video datasets are available for gesture classification. In this paper, 
we present new video dataset named gesture dataset. To select gesture categories, we manually counted the number of 
gesture used in the same group from school festival videos which captured guests enjoying the festival at corridor. Since 
Pointing with hands, Nodding and Waving hands are the dominant (70.8%) of gestures, we recognize these gestures. The 
dataset contains 456 videos in total from three gesture categories, with each category containing at least 100 videos (see 
Figure 3 for examples). There are 43 subjects wearing different clothes in two different environments, such as semi-outdoor 
and indoor. Each gesture class has 70 videos for training and 30 videos for testing. 

 

 
Figure 3. Simple frames from the gesture dataset used in our experiments. (a)-(c): Indoor shot. (d)-(f): Semi-outdoor 
shot. 

 

2.2 Spatial segmentation  

We set regions around each human body part i.e., head, torso, arms and legs for each video frame. For this purpose, we 
use a method inspired by Rothrock et al. [2]. They proposed a framework for human pose estimation using an articulated 
grammar model. Figure 4 (a) and (b) show the results of their method. These results present that accuracy of arms detection 
is lower than that of head, torso and legs detection (Figure 4 (b)). In addition, their predicted regions are narrower than the 
actual regions, as shown in Figure 4 (a) and (b). In this paper, we expand regions size around their predicted head, torso 
and legs regions by 30%, as shown in Figure 4 (c). Arms regions are also expanded with circumscribed rectangles size of 
their predicted head and arms by 30%, as shown in Figure 4 (d). We choose these regions size since it results in better 
performance, as discussed in Section 3.1. We calculate dense trajectories in each part region. 

 

 
 

Figure 4. Spatial segmentation. (a): A successful example of a method inspired by Rothrock et al. [2]. (b): A failure 
example of their method. (c): Regions of head, torso and legs. (d): Regions of arms 

(a) (b) (c) (d) 



 
 

 
 

 
 

2.3 Temporal segmentation 

To segment times, we divide video frames into fixed time durations as shown in Figure 5. In this paper, the frames are 
divided into four segments. We choose this number since it results in better performance, as discussed in Section 3.1. 

 

 
Figure 5. Process of temporal segmentation. 

 

2.4 Key-points detection and tracking 

Key-points are densely sampled on a grid spaced by five pixels in multi scales. We use eight spatial scales increased by a 
factor of 1 2. Most points in homogeneous areas are eliminated by a threshold for the smaller eigenvalue of their 
autocorrelation matrices. Then these sampled points are tracked by media filtering of dense flow field 𝜔 = 𝑢&, 𝑣& 	[25].  

  𝑃&+, = 𝑥&+,, 𝑦&+, = 𝑥&, 𝑦& + 𝑀 ∗ 𝜔& |(45,65), (1) 

where 𝑀 is the median filter kernel, ∗ is convolutional operation, and (𝑥&, 𝑦&) is the rounded position of 𝑥&, 𝑦& . To avoid 
the drifting problem of tracking, we limit the length of a trajectory to 15 frames. Those static trajectories are removed as 
they lack motion information, and other trajectories with suddenly large displacement are also removed, since they are 
obviously incorrect due to inaccurate optical flow. 

 

2.5 Feature extraction 

For each trajectory, we compute several descriptors i.e., trajectory, Histogram of Gradient (HOG), Histogram of Optical 
Flow (HOF) and Motion Boundary Histogram (MBH) with exactly the same parameters as [1]. The trajectory descriptor 
is a concatenation of normalized displacement vectors. The other descriptors are computed within the space-time volume 
aligned with the trajectory to encode the motion information, as shown in Figure 6. The size of the volume is 32×32 pixels 
and 15 frames long. To embed structure information, the volume is subdivided into a grid of size 2×2×3. HOG is based 
on the orientation of image gradients and captures the static appearance information. Both HOF and MBH measure motion 
information, and are based on optical flow. HOF directly quantizes the orientation of flow vectors. MBH splits the optical 
flow into horizontal and vertical components, and quantizes the derivatives of each component. The final dimensions of 
these descriptors are 30 for trajectory, 96 for HOG, 108 for HOF and 192 for MBH. We extract these feature descriptors 
from each part region and time and combine them.  

 

2.6 Classification 

To encode features, we use BoF approach. We train a codebook for each descriptor type using 100,000 randomly sampled 
features with 𝑘–means. The size of the codebook is set to 4000. For classification, we use a non-linear SVM with RBF-𝜒= 
kernel [21] and different descriptor types are combined by summing their kernel matrices normalized by the average 
distance. 

 



 
 

 
 

 
 

 
Figure 6. Process of future extraction. The trajectory is represented by relative point coordinates, and the descriptors are 
computed along the trajectory in a 32×32 pixels neiborhood, which is divided into 2×2×3 cells. 

 

3. EXPERIMENTAL RESULTS 
In this section, we first described parameter tuning in the proposed method. Then, we gave the experimental results and 
compared to the original dense trajectories [1], the spatial segmented dense trajectories and the temporal segmented 
dense trajectories on the gesture dataset. 
  
3.1 Parameter Tuning 

Region size. To specify size of detected human body parts regions for spatial segmentation, we explore different size of 
their regions on the gesture dataset by using spatial segmented dense trajectories. In this exploration experiment, the results 
are shown in Figure 7 (a). We vary the size from 10 to 60%. The results show that size 30% achieves the high performance. 
Thus, we apply the size as 30% in the remainder this section. 

Division number. We also explore different division number on this dataset by extracting feature descriptors from 
temporal segmented dense trajectories, to specify division number for temporal segmentation. We vary the division number 
from 1 to 6. The results are shown in Figure 7 (b). The results show that division number four achieves the high 
performance. In this paper, we fix the division number as four. 

 

 
 

Figure 7. Parameter tuning of different settings in the proposed method on the gesture dataset. (a): Comparison of 
different size of body parts regions for spatial segmentation. (b): Comparison of different division number for temporal 
segmentation. 

(a) (b) 



 
 

 
 

 
 

3.2 Comparison to the original dense trajectories 

We compared our method (spatial and temporal segmented dense trajectories) to the original dense trajectories [1], the 
spatial segmented dense trajectories and the temporal segmented dense trajectories on the gesture dataset. We summarize 
the experimental results in Table 1. The confusion matrices for the original dense trajectories and our method is shown in 
Figure 8. Table 1 and Figure 8 show that our method outperformed the original dense trajectories on all categories. In the 
original dense trajectories, fine-grained motion such as “Nodding” tended to be wrongly recognized as other gesture 
categories (Figure 8 (a)) if there are background video noises. Then, “Pointing” tended to be recognized as “Waving” 
(Figure 8 (a)) because they include similar motion. However, our method and the spatial segmented dense trajectories for 
“Nodding” outperformed the original dense trajectories by 15%. From this result, the spatial segmentation enabled to 
remove video noises and recognize fine-granted motion. Our method for “Pointing” also outperformed the original dense 
trajectories by 30%. This result shows that spatial and temporal segmentation is effective for classifying similar motion 
(Figure 8 (b)).  

However, our method for “Waving” show lower performance than the temporal segmented dense trajectories. The reason 
is that when the region of head overlaps with the region of arm, we fail human body parts detection and spatial segmentation 
of them, as shown Figure 9. To result in better performance, we will need a head detection which takes occlusion into 
account. 

 

Table 1. Gesture recognition performance on the gesture dataset. We compared our method with the original dense 
trajectories (DT) on the gesture dataset. “Spatial + DT” indicates “the spatial segmented DT”. “Temporal + DT” indicates 
“the temporal segmented DT”. “Spatial + Temporal + DT” indicates “the spatial and temporal segmented DT” i.e., our 
method. 

 Pointing Nodding Waving Mean 

Wang et al. [1] 50.0 % 75.0 % 70.0 % 65.0 % 

Spatial + DT 65.0 % 90.0 % 75.0 % 76.7 % 

Temporal + DT 70.0 % 75.0 % 80.0 % 75.0 % 

Spatial + Temporal + DT 80.0 % 90.0 % 75.0 % 81.7 % 

 

 

 
 

Figure 8. Confusion matrices for the gesture dataset. (a): Confusion matrix for the original dense trajectories [1]. (b): 
Confusion matrix for the proposed method. 

(a) (b) 



 
 

 
 

 
 

 
 

Figure 9. A failure example of part detection and spatial segmentation. (a): A failure example of body part detection [2]. 
(b): A failure example of spatial segmentation. 

 

4. CONCLUSION 
This paper improved dense trajectories by extracting local features with spatio-temporal segmentation. To segment spaces, 
we used a body part detection and improved region range of each body part. To segment times, we divided video frames 
into fixed time durations. Since only few video datasets are available for gesture classification, we also introduced new 
gesture dataset. We evaluated our method with the dataset. Experimental results show that our method outperformed the 
original dense trajectories by about 20% on all of gesture categories. We plan to further improve the performance of gesture 
recognition by fusing deep-learned features, such as Two-stream Convolutional Networks (ConvNets) which used both 
RGB ConvNet and optical flow ConvNet for classification.  

In future work, we will investigate the performance of group detection by adding gesture recognition as new feature in 
video. For this purpose, we will also need human pose and eye gaze estimation information in addition to human gesture 
recognition information. 
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