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We propose a novel method for estimating physical impairment of elderly people using gait. To achieve this, we first investigate
which gait feature is effective for this purpose among gait energy image (GEI), duration time, and phase fluctuation as dynamic
features. GEI is a popular appearance-based feature showing high performance in human authentication. By comparison, we
find that it is the most reasonable feature. In real situations, however, GEI is easily affected by clothes variations or carrying
conditions, so that the use of whole body results in decreasing performance. Considering this problem, we thus propose to use
only the GEI features of the most discriminative body patches. From the experiments that evaluate the contribution of various
sizes of body patches, we find that head and chest regions perform better than the whole body with the classification accuracy
improved from 80.93% to 83.17% for the visual impairment discrimination case. As for the leg impairment detection case, the
leg region performs better than the whole body by an accuracy increased from 69.30 to 75.05%. These results confirm the
effectiveness of patch-GEI for impairment detection. © 2015 Institute of Electrical Engineers of Japan. Published by John Wiley
& Sons, Inc.
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1. Introduction

Walking is one of the indicators of human health. Normal
walking requires the coordination of the cerebellar, sensory, visual,
vestibular, muscular, basal ganglia, and auditory systems, so
any abnormality in these systems can result in gait disorder
[1]. With aging, those functions degenerate, which results in
abnormal walking style. Indeed, adult people who have some
impairments, such as poor binocular visual acuity, weak inter-joint
coordination ability, and loss of hearing, show different walking
styles in postural and dynamic aspects compared to people with
no impairments [2–4]. We, humans, can usually distinguish the
differences quite easily just by observing their ways of walking.
If we design a system that can automatically detect such impaired
people from their walking styles, it would be very useful in elderly
care [5] and in many other gait-related applications such as the
diagnosis of diseases like Parkinson’s disease [6–9].

Existing studies related to gait analysis are separated into two
categories: model-based and appearance-based methods. Model-
based methods usually apply a motion capture system [2,3,10–12]
or wearable sensors [6,13,14] to capture accurate pose parameters.
For example, Hallemans et al. [10] used a 3-D motion capture
system to measure head orientation, stride length, and trunk
flexion to verify whether poor vision affects dynamic stability of
walking. Other model-based studies [15–20] use movies captured
by cameras and estimate the pose parameters by fitting and
tracking body components. Taha et al. [17] fitted a skeleton model
to binary human silhouettes to calculate their posture lean and
stride cycles for detecting Parkinsonian gait. From the promising
results of these two model-based approaches, we confirm that
the walking posture, the temporal cue, and the stability property
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are important for disorder gait detection. In fact, model-based
approaches can measure precise trajectories of moving joints and
body components, but they require laboratory environment settings
and cooperation of the subject; the subjects have to wear special
clothes or devices. Further, they usually suffer from low quality
of the pose estimation and high computation cost. These methods
are thus not applicable to the scheme we would like to achieve.

On the other hand, appearance-based methods use captured
movies directly, so subjects do not need to wear any special
devices. Chen et al. [7,8] used binary silhouettes extracted from
color images to distinguish people with Parkinson’s Disease from
normal ones. Their study used the binary images directly for
classification, and hence the results heavily depend on the quality
of each silhouette. Other works [21–24] have tried to extract
some features from the gait observation and use them for gender
recognition and human authentication. Among those features, gait
energy image (GEI) [23] was often used since it is well known
to show high authentication performance for individuals from
their gait. Another advantage of GEI is that it does not require
high-quality silhouette extraction; it is quite robust against noise
inevitably included in extracted silhouette images. Considering
that GEI is defined as an average of sequential silhouettes in a
walking period, it can encode the shape of people very well, so
that it must be effective for personal authentication. It does not,
however, preserve temporal information such as the duration a
walking period. Therefore, besides the GEI, we still investigate
the effectiveness of the duration, which is relative to the walking
speed. Considering that both GEI and duration time describe
properties within a period, we further study phase fluctuation [25]
between the neighboring walking periods. This phase fluctuation
is used for estimating the walking stability, which is considered to
be an important cue for assessing the ability to walk. We extract
those gait features and use them to distinguish two common forms
of impaired walking (leg and visual) from normal walking using
linear discriminant analysis (LDA). From the evaluation results,
we find that GEI is the most reasonable gait feature to describe
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the differences between the two walking categories. As Cho et al.
[26] have pointed out that for healthy adults gender would affect
their walking styles in some aspects, we also discuss the influence
of gender on impairment detection among those gait features.

GEI mainly encodes the shape information of a human body.
Even if we include a size normalization step before extracting GEI,
it is still more or less affected by individual shape differences.
To eliminate the influence of body parts other than the relevant
region, we propose using only the most effective GEI patch
for classification. Two works give detailed analysis of body
components in gender recognition [27,28]. Li et al. [27] segment
the averaged gait image into seven components: the head, the
arm, trunk, the thigh, the front leg, the back leg, and the feet.
The different contributions of human components for human
authentication and gender recognition are analyzed. In addition,
Yu et al. [28] point out that hair style and chest are two important
body components for gender classification. Those components
therefore should not be separated. In their paper, they have a
different segmentation approach for human components: head and
hair style, chest, back, waist, buttocks, and legs. This segmentation
improves their performance. Experimental results vary with the
change of the criteria for the segmentation of human body
parts. Even though disorder gait is quite different from normal
walking in gender classification, walking posture will change
according to different illnesses. It is hard to decide what kind of
body component segmentation will be suitable for our purpose.
Therefore, we apply several grid patch sizes of the human
silhouettes for evaluation. We present the effectiveness of our
method by comparing the performance of patch-GEI with full-body
GEI in impairment detection. Considering realistic applications
of distinguishing multi-class impairments simultaneously, we also
provide a solution strategy.

The rest of this paper is organized as follows. In Section
2, we first describe gait features extraction, and then introduce
experimental data collection. Finally, we show the performance
of three different gait features in detecting impairment and
identifying the influence of gender. Section 3 is concerned about
the contribution of body patches and an attempt to provide a
solution to a real-life application. Conclusions are drawn in Section
4.

2. Gait Features and Their Performance

2.1. Gait features extraction In this section, we describe
how to extract the shape, temporal, and stability information
features of walking subjects. From the original input color image
sequence, we first apply background subtraction to extract binary
silhouettes. After position alignment and size normalization, the
binary silhouette sequences are called “gait silhouette volumes”
(GSVs) [24].

With GSV, assuming periodicity of walking, we estimate a walk-
ing period length by calculating the normalized autocorrelation of
the silhouette images in the temporal axis. The gait period Nperiod

is determined as the number of frames that makes the normalized
autocorrelation maximum. As the sequences usually contain more
than a period, for duration time and GEI, we extract only the part
{Si }(i = 1, 2, · · · , Nperiod) that corresponds to a period. Note that in
our experimental setting, we pick up the period around the center
of the image. Nperiod denotes the number of frames in a period,
which we call “duration time” in this paper. Once we obtain GSV,
the GEI feature is calculated as follows:

G(x , y) = 1

Nperiod

Nperiod∑

i=1

Si (x , y) (1)

Original color sequence GSV GEI

Fig. 1. Gait energy image (GEI)

where i is the frame number in a period of walking silhouettes,
and x , y is the coordinate in the image. An example of the GEI is
shown in Fig. 1. In the GEI image, the pixel intensity corresponds
to the frequency about the human body appearance. A brighter
intensity indicates a human body part that has less motion, such
as the head and torso. On the other hand, gray parts correspond to
regions with a lot of motion, like legs. Black means no body parts
appear at the corresponding place.

We now briefly introduce the main processing steps for calcu-
lating phase fluctuation using the method that was proposed by
Makihara et al. [25]. Based on the prior known relation between
time and phase, and given a quasi- periodic sequence (GSV in
this study), we can estimate a phase evolution sequence in an
optimization framework with the help of instantaneous period esti-
mation using short-term period detection (STPD) and self-dynamic
time warping (DTW). This is the problem of phase registration.
However, because of the existence of the combination ambigu-
ity included in the quasi-periodic signal, the combination of the
phase evolution function and the normalized periodic signal is
not fixed. Thus, the phase evolution function linearization process
is still needed. The procedures are mainly separated into three
steps [29]: (i) period segmentation, (ii) reconstruction of the time
warping function (TWF), and (iii) linearization of the TWF. Here,
the TWF is about the relationship between linearly evolved phase
and estimated relative phase in a period. As Makihara et al. [26]
pointed out that their proposed method reconstructs TWFs from
a single quasi-periodic signal through a bias estimation process,
the variance in the reconstructed TWFs can be used as a kind of
phase evolution instability measure. For more processing details,
we refer the reader to [25–29].

2.2. Experimental data collection In our study, we
pick up two categories of commonly seen impairments among
senior people: leg impairment and visual impairment. Stiff knee is
a typical leg problem in the elderly. The reason for that problem is
that joints become stiffer and less flexible with aging. In addition,
old people are prone to have some lesions on the eye lens or
retina, which results in visual impairments with symptoms of blur
and tunnel view. As you can image, however, it is hard to collect
walking data of people who really have these impairments. One
of the reasons is that it is difficult to find enough numbers of
real patients. Moreover, even if we can find sufficient number of
patients, it is still difficult to ensure their safety in experiments.
Considering these limitations, we use an age simulation kit to
help healthy people “act as” these two kinds of commonly seen
impaired people. As the simulation kit, we adopt a product of

S70 IEEJ Trans 10(s1): S69–S76 (2015)



DETECTION OF GAIT IMPAIRMENT IN THE ELDERLY USING PATCH-GEI

(a) (b) (c)

Fig. 2. Three types of walking. (a) Leg-impaired walking. (b)
Visually impaired walking. (c) Normal walking

Sanwa Manufacturing Co., Ltd [30]. Since it is a popular one that
has been used in many fields, it is reasonable for us to assume
that it simulates well real elderly walking. We then prepare three
types of walking, as follows: 1. leg-impaired walking by fastening
leg supporters on both knees, which restricts knee bending, 2.
visually impaired walking by wearing glasses that blur the sight
and narrow the view field, and 3. normal walking without anything
fixed. Examples of these three kinds of walking styles are shown in
Figs 2(a)–(c), respectively. When collecting walking data, people
walk on a straight path with a camera capturing sideways, so all
of the silhouettes in our study are lateral. In our experiments, the
resolution of silhouette images is 120 × 80, so the dimension of
GEI is also 120 × 80. 1

The number of subjects for leg impaired walking, visually
impaired walking, and normal walking were 186 (71 female, 115
male), 142 (73 female, 69 male), and 325 (148 female, 177 male),
respectively. Note that every participant in the data collection
was instructed to finish two categories of walking: one type of
impaired walking, and normal walking. So number of subjects with
normal walking is much larger than that of impaired walking. The
age range of participants was 4–78. By wearing the simulation
kits, they were all recognized as same-age group ”old adults”.
Some situations, such as calculating phase fluctuations, required
the walking sequence to contain more than one walking periods,
hence the number of subjects decreased.

2.3. Classification method To evaluate performance of
discrimination, we apply LDA to the extracted gait features.
Since our interest is in how much each impaired walking is
changed compared to normal walking, we apply two-class LDA
between normal walking and that with leg/visual impairment.
Note that, because the subject number is not balanced for each
class, we choose the same subject number for the two classes.
In total, we make 30 times selection, and the results are the
average of those 30 times and also their standard deviation. In
the case of GEI, since the feature is high-dimensional vectors,
we preliminarily apply principal component analysis (PCA) to
compress them into the dimension number that preserves around
90% of the original energy. Each selection randomly chooses
GEI from different subjects to compose the input features for

1 As is well known, nowadays we have to obtain and manage such
image data including personal information with extreme discretion. We
consulted a lawyer about procedure to obtain and manage the data and
about how to get agreement from subjects, and we carefully followed the
procedure. Moreover, in the case of a child subject, who is not regarded
to be responsible for the agreement, we ask his/her parent to give the
agreement on his/her behalf. Owing to this procedure, images in this dataset
can be pasted on this paper, and can be analyzed for our research purpose.

PCA. As a result, the number of components and distribution
of principal component scores vary among between selections.
So instead of a specific number of components, a range is
given. Take the whole body GEI as input feature, for example.
Considering the situation of compressing features of subjects with
normal and visual impairments, the range of component numbers
corresponding to 90% of the original energy is 50–52. For case of
normal between-leg impairment, the range is 54–56. One example
for the distribution of each principal component score is shown in
Fig. 3.

2.4. Discrimination ability of each feature

2.4.1. GEI We evaluate the performance of GEI in distin-
guishing impaired walking from normal walking. The table in left
side of Fig. 4 shows the performance of normal walking and visu-
ally impaired walking. It shows the accuracy is about 81%. The
two images at the right side are the re-projections of the most dis-
criminative LDA direction. Comparing these two images, we can
find that a person with visual impairment tends to bend his/her
head more to the front than a normal person. It sounds reasonable
because people with lower visual ability need to be more careful
about the road. As for the performance of the leg-impaired walking
and normal walking, theresults are shown in Fig. 5. As the figure
shows, the classification accuracy is about 69%. The re-projection
images on the right side show that leg-impaired walking has a
slightly smaller leg angle and lower head bending than normal
walking. The performance of GEI shows that impairment affects
the walking posture.

2.4.2. Duration time Fig. 6 and Fig. 7 show the distri-
bution of the duration time of normal walking and leg/visually
impaired walking and also their classification accuracy. The distri-
butions of the normal and impaired walking are shown by red and
blue curves, respectively. In Fig. 6, the peaks of the two distribu-
tion are remarkably aligned. It means that visual impairment does
not affect the duration time. In Fig. 7, on the other hand, we find
that leg impairment affects the duration time; the duration time of
the leg impairment is obviously longer than that of normal walk-
ing. However, the large overlapped region of two distributions in
each graph means that the duration time is not very effective for
accurate impairment estimation and the classification results also
prove that point.

2.4.3. Phase fluctuation Phase fluctuation of a neighbor-
ing phase estimated sequence is used to estimate the stability of a
walking style. It is measured by the variance of the reconstruction
of TWFs. The smaller the variance, the more stable the phase evo-
lution between neighboring periods. That also means the walking
style of the subject is more stable. We note here that to calculate
the phase fluctuation, a walking sequence should contain more
than two periods. The numbers of subjects who fulfill this condi-
tion are 198, 92, and 66 for normal walking, leg-impaired walking,
and visual-impaired walking, respectively.

Fig. 8 and Fig. 9 show the distribution of variance of recon-
struction DTW of normal walking and leg/visual-impaired walking
and also their classification accuracy. The distributions of the nor-
mal and impaired walking are shown by the red and blue curves,
respectively. In both Fig. 8 and Fig. 9, the peaks of the two dis-
tribution are aligned. It means that the stability of the walking
style is different between individual people, but not affected by
the physical impairment. The classification accuracy also proves
this point.

2.5. Influence of gender on gait features The paper
of Cho et al. [26] proves the assumption that healthy adults walk
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Fig. 3. Distribution of the principal component scores for GEI of subjects from (a) normal and visual impairment, and (b) normal and leg
impairment

Normal vs. Visual impairment

Normal 81.17 ± 2.84%

Visual impairment 80.68 ± 1.99%

Average accuracy 80.93 ± 1.90%
Visual

impairment
Normal

Fig. 4. Accuracy and re-projection of normal and visually
impaired walking

Leg
impairment

Normal

Normal vs. Leg impairment

Normal 70.27 ± 2.00%

Leg impairment 68.33 ± 1.99%

Average accuracy 69.30 ± 1.47%

Fig. 5. Accuracy and re-projection of normal and leg-impaired
walking

differently according to their gender, based on some aspects. After
normalization, which was used to avoid the body size effect, the
authors reach the following conclusions: (i) no gender differences
were found in walking speed and also in the durations of the
stance phase and the double support period; (ii) some differences
were discovered in postural aspects. Females walked with their
pelvis tilted more anteriorly, more up and down oblique motion,
hip joints more flexed rotated, knee joint in more valgus angles,
and narrower step widths. Considering the property of the three
gait features in this paper (namely GEI, duration time, and phase
fluctuation), GEI, which describes the body shape of the walking
subjects, is probably affected by gender. We verify the assumption
by comparing among the detection results using GEI from subjects
of mixed gender, same gender, and cross-gender, which are shown
in Fig. 4 and Fig. 5, Table I and Table II. Note that mixed gender
means subjects used without considering gender, mixed together
for training and testing, while cross-gender means using male
(female) subjects for training but female (male) subjects for testing.

From these figures, we find that the results change when
applying different gender conditions, which means that both
categories of impairment detections are affected by the gender. Leg
impairment classification is further affected. This may be due to
the fact that more obvious differences exist in gait-related anatomy
in leg rather than neck between genders. Since the results decrease
in most of the classification in same gender cases and in all

cross-gender situations, and also gender information always lacks
in the real scenarios, using the strategy of classification without
considering gender factor is more robust.

2.6. Discussion Among the features we picked up, GEI
gives fine performance, but duration time and phase fluctuation are
not very effective. In the case of the duration time, although the
statistical distribution is changed by impairment, it is not adequate
for impairment estimation since the overlapped regions between
the distributions are quite large. We also found that the phase
information is not effective. Walking stability is not affected by
the physical impairment, but rather by the individual differences.
So GEI is chosen to present the discriminative information of
different walking styles. Even though gait is affected by gender,
GEI evaluation results show that classification without considering
gender is more feasible in real scenarios.

3. Performance and Real Application of Patch-GEI

3.1. Performance of patch-GEI As discussed in Section
2, it appears that GEI is the best feature to detect impaired walking,
because posture difference between different walking styles can be
described by this feature. In other words, walking shape contains
the discriminative ability for impairment detection. On the other
hand, however, the shape is usually affected by clothing, carrying,
and so on, in real situations. Considering this problem, we thus
propose to use only effective parts to decrease negative influence
of the other parts of the body.

To decide which body patches contain the most discriminative
information, we first need to determine the criterion for segmenting
the whole GEI into patches. As mentioned previously, two works
give detail analysis of contribution of body components for
gender recognition [27,28]. From their experiments, we found
that results become different with the change of criterion for
the segmentation of human component. Since our scenario is, of
course, different from those studies, we have to find a new rule (the
most discriminative patches) for our scenario. To do this, we apply
various grid patch sizes of human body, and evaluate performance.

In this study, we evaluate the performance of five levels of patch
sizes, they are 5 × 5, 10 × 10, 20 × 20, 30 × 30, and 40 × 40.
From the whole-body GEI, we extract the region corresponding to
the patch size with row scanning order and with the skipping step
of 5 pixels. For each patch region, we also use the same processing
flow with whole GEI, first PCA for compressing into the dimension
which preserves about 90% energy of the original one, and then
LDA for classification. Their performances are shown in Fig. 10
and Fig. 11.
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Fig. 8. Phase fluctuation distribution and accuracy of normal and visually impaired walking

In Fig. 10 and Fig. 11, “classification accuracy” is the perfor-
mance of patch shown in the third row, which is the best per-
formance of the same patch size for a whole GEI. And the gray
human images in the these rows are the averages of GEI from
all the leg-impaired subjects and all the visual-impaired subjects
for Fig. 10 and Fig. 11, respectively. The figures on the fourth
row of each figure are the performance of all the patches of the
same size. The points in the image are located on the center of
the patches. And color of the points is relative to the classification
accuracy using that corresponding patch GEI; color closer to blue

means lower accuracy and color closer to red means higher accu-
racy. Also note that the rightmost column is the performance of
the whole GEI.

From the results shown in Fig. 10, we found that patch with
size of 30 × 30 positioning at the head and breast gave the
best performance with the classification accuracy of 83.17%.
Comparing with the average accuracy of whole GEI of 80.93%,
using only patch around the head and breast region can improve the
accuracy by 2.24%. This result proves our assumption that other
parts of the human body will influence the discriminative ability
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Table I. Accuracy of same gender classification. (a1),(b1)
Female subjects training and testing; (a2),(b2) male subjects

training and testing

normal vs. visual impairment  
(female training, female testing)

normal 79.41% ± 3.27%

visual impairment 76.80% ± 3.41%

average accuracy 78.11% ± 2.81% 

(a1)

normal vs. leg impairment  
(female training, female testing)

normal 65.40 %± 4.66 %

leg impairment 62.30 %± 3.42 %

average accuracy 63.85 %± 3.42 %

(b1)

normal vs. visual impairment  
(male training, male testing)

normal 77.29 %± 2.67 %

visual impairment 78.26 %± 2.50 %

average accuracy 77.78 %± 1.93 %

(a2)

normal vs. leg impairment  
(male training, male testing)

normal 80.52 %± 2.36 %

leg impairment 84.61 %± 2.25%

average accuracy 82.57 %± 1.8%

(b2)

Table II. Accuracy of cross-gender classification. (a1),(b1) Male
subjects training and female subjects testing; (a2),(b2) female

subjects training and male subjects testing

normal vs. visual impairment  
(male training, female testing)

normal 63.09%± 11.26%

visual impairment 72.42%± 7.60%

average accuracy 67.75%± 4.11%

(a1)

normal vs. leg impairment  
(male training, female testing)

normal 68.17%± 7.21%

leg impairment 42.77%± 5.38%

average accuracy 55.47%± 1.70%

(b1)

normal vs. visual impairment  
(female training, male testing)

normal 77.74%± 6.39%

visual impairment 78.16%± 8.77%

average accuracy 77.95%± 3.13%

(a2)

normal vs. leg impairment   
(female training, male testing)

normal 48.40%± 9.63%

leg impairment 70.64%± 8.39%

average accuracy 59.52%± 2.79%

(b2)

when using GEI is reasonable. Note that, though the other sizes
of patches perform a little worse, all color closer to red appears at
the upper region and all the highest accuracy appears at the head
regions. This once again confirms the fact that people with visual
impairments need to bend their heads to pay more attention to the
condition of roads. And still, when we check the lower part of the
color points image, we find that they are near to the blue color,
which means impairment on eyes have little influence on the lower
body.

Fig. 10 shows the performance of patch-GEI in detecting leg-
impaired walking. The patch size of 40 × 40 shows the most

discriminative ability at the accuracy of 75.05%, which is an
improvement of 5.75% compared with the performance of whole
GEI. All the best performances at the leg region also confirm
the fact that people with leg impairments walk with smaller stride
lengths. And about the color point distribution, the red closer color
points also appear at the head region, but they are not so obvious.
This means that the leg impairment makes the subject walk with
a smaller leg angle, and at the same time, makes the balance of
the moving body, so the subjects have a little front lean. But this
“front lean” is less effective than the leg change, so using only the
leg region is enough. From the analysis mentioned above, patch-
GEI can decrease the influence of the other parts of the human
body. It also can solve the problem of sharp shape change due to
carrying baggage. Using only the effective patch, like only head or
leg regions can avoid the shape change around baggage regions.

3.2. A solution to a real application of patch-GEI
Besides exploring the difference between impaired walking and
normal walking, we go further to solve another issue that makes
our research more practical, namely distinguishing multi-type
impairments simultaneously. Considering that visual impairment
and leg impairment are independent of each other, a subject might
suffer from both visual and leg impairments at the same time. To
label the subject as either visually impaired or leg impaired only is
not very reasonable; therefore such kind of compound visual and
leg impairment is considered as a new impairment type.

The direct multi-class classification would get confused in
distinguishing pure impairment and compound impairment. We
thus provide the classification strategy of using a binary classifier
to detect one type of impairment, one type of impairment vs.
the other types of impairments (including normal). In detail,
we employ the strategy of visual impairment vs. non-visual
impairment (including normal and leg impairment) to diagnose
whether the subject suffers from visual impairment, and use the
method of leg impairment vs. non-leg impairment (including
normal and visual impairment) to detect leg impairment. In our
experiment, the accuracy of visual impairment detection is 77.82%
and that of leg impairment detection is 72.65%.

4. Conclusion

In this paper, we developed a scheme for impairment detection
in elderly people through camera-captured walking sequences.
We first listed three gait features: GEI, duration time, phase
fluctuation, which cover the posture, temporal, and dynamic aspect
of walking. Next, we used a two-class LDA for classification.
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Patch size 5*5 10*10 20*20 30*30 40*40 120*80

Average
accuracy

Most
effective

patch

Patch
accuracy of
the whole

image

76.26 ± 1.40% 75.79 ± 1.18% 81.20 ± 1.61% 83.17 ± 1.36% 82.31 ± 1.75% 80.93 ± 1.90%

Fig. 10. Classification accuracy of normal walking and visually impaired walking
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Fig. 11. Classification accuracy of normal walking and leg-impaired walking

From the experimental results, we confirmed the discriminative
ability of GEI over the three features. We also discussed the
influence of gender in GEI. Further, considering that GEI is
mainly about shape information, it must be affected by the other
parts of the human body except the effective part for detecting
impairments. We thus proposed using only the effective patch
GEI for classification. We could improve the performance by 2.24
and 5.75%, respectively, for detecting visual and leg impairment
compared with whole GEI. This proves the effectiveness of patch-
GEI. Based on this fact, we considered the real application of
distinguishing multiple impairments simultaneously using binary
classification. The accuracy of detecting visual impairment was
77.82% and that of leg impairment detection was 72.65%.

Future work consists of constructing an automatic impairment
estimation system based on the patch-GEI method. Moreover,
we also have to consider how similar it is to walk wearing the
simulation kits when compared to the walking of actually impaired
people.
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